An improved scheme for online recognition of control chart patterns
نویسنده
چکیده
This paper proposes two alternative schemes for the online recognition of control chart patterns (CCPs), namely: 1 a scheme based on direct continuous recognition 2 a scheme based on ‘recognition only when necessary’. The study focuses on recognition of six CCPs plotted on the Shewhart X-bar chart, namely, random, shift-up, shift down, trend-up, trend-down and cyclic. The artificial neural network (ANN) recogniser used was based on multilayer perceptrons (MLPs) architecture. The performance of the schemes was evaluated based on percentage correct recognition, average run lengths (ARL) and average recognition attempts (ARA). The findings suggest that the online recognition should be made only when necessary. Continuous recognition is not only wasteful, but also results in poorer results. The methodology proposed in this study is a step forward in realising a truly automated and intelligent online statistical process control chart pattern recognition system.
منابع مشابه
Control Chart Recognition Patterns using Fuzzy Rule-Based System
Control Chart Patterns (CCPs) recognition is one the most important concepts in control chart application. Relating the patterns exhibited on the control chart to assignable causes is an ambiguous and vague task especially when multiple patterns co-exist. In this study, a fuzzy rule-based system is developed for X ̅ control charts to prioritize the control chart causes based on the accumulated e...
متن کاملA Bayesian Approach for the Recognition of Control Chart Patterns
In this research, an iterative approach is employed to recognize and classify control chart patterns. To do this, by taking new observations on the quality characteristic under consideration, the Maximum Likelihood Estimator of pattern parameters is first obtained and then the probability of each pattern is determined. Then using Bayes’ rule, probabilities are updated recursively. Finally, when...
متن کاملA New Statistical Approach for Recognizing and Classifying Patterns of Control Charts (RESEARCH NOTE)
Control chart pattern (CCP) recognition techniques are widely used to identify the potential process problems in modern industries. Recently, artificial neural network (ANN) –based techniques are very popular to recognize CCPs. However, finding the suitable architecture of an ANN-based CCP recognizer and its training process are time consuming and tedious. In addition, because of the black box ...
متن کاملEconomic Statistical Design of a Three-Level Control Chart with VSI Scheme
Traditionally, the statistical quality control techniques utilize either an attributes or variables product quality measure. Recently, some methods such as three-level control chart have been developed for monitoring multi attribute processes. Control chart usually has three design parameters: the sample size (n), the sampling interval (h) and the control limit coefficient (k).The design parame...
متن کاملAN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCAET
دوره 3 شماره
صفحات -
تاریخ انتشار 2011